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ABSTRACT

We advance and experimentally implement a protocol to generate optical coherence lattices (OCLs) that are not modulated by an envelope
field. Here, we dub them perfect OCLs. Structuring the amplitude and phase of an input partially coherent beam in a Fourier plane of an
imaging system lies at the heart of our protocol. In the proposed approach, the OCL node profile depends solely on the degree of coherence
of the input beam such that, in principle, any lattice structure can be attained via proper manipulations in the Fourier plane. Moreover, any
genuine partially coherent source can serve as an input to our lattice generating imaging system. Our results are anticipated to find
applications to optical field engineering and multi-target probing among others.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062924

Coherent optical lattices, such as periodic structures of optical
field amplitude, phase, or polarization, have long been the focus of
attention of the optical community due to a wealth of their applica-
tions to the subjects as diverse as neutral gas heating,1 coherent manip-
ulation of cold atoms,2 cold-atom superfluidity exploration,3 and
quantum-state control,4 to mention but a few examples. Recently,
optical coherence lattices (OCLs), as an altogether different kind of
optical lattices, refer to partially coherent light sources with spatially
periodic degrees of coherence.5 They have triggered much interest ever
since their theoretical introduction5,6 and subsequent exploration.7–12

OCLs have recently attracted much interest due to their intriguing
propagation characteristics. For instance, the periodicity reciprocity
arises between the source coherence and far-zone intensity of OCLs
on their free space propagation.6 It has inspired researchers to realize
scalar/vector beam arrays with adjustable spatial distributions and
node profiles in the far zone or a focal plane of an imaging sys-
tem.7–9,11 The propagation of OCLs through the atmospheric and oce-
anic turbulence has been studied as well. It was found that the OCLs
of higher beam order are less distorted by the turbulence than are the
conventional Gaussian Schell-model (GSM) beams.13,14

Yet, only a few protocols for the experimental realization of
OCLs have been reported to date.15,16 In Ref. 15, an uncorrelated
superposition of elementary beams has been utilized to generate
OCLs. However, a finite spot size of an elementary beam led to the
appearance of an envelope field J1ðrÞ=r modulating OCLs produced
via this protocol. In Ref. 16, OCLs were generated through scattering
of a light beam by a specially designed random medium, which
imposed envelope fields on the produced OCLs as well. Hence, the
inevitability of the envelope field is germane to all the methods for
OCLs generation reported in the literature to date. Moreover, although
OCLs of different lattice structures can be generated by the protocols
of Refs. 15 and 16, these protocols lack simultaneous control of the lat-
tice node profile and the lattice structure.

In this Letter, we draw on a previously elaborated arsenal of
Fourier optics techniques to engineer partially coherent beams17–26 to
advance an efficient protocol to realize OCLs. Such beams are not
embedded into any envelope field, thereby maintaining a strictly peri-
odic coherence structure that we dub a perfect optical coherence lat-
tice. In our protocol, each OCL node profile depends only on the
degree of coherence (DOC) of a light source, and the lattice structure
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is determined by the Fourier spectrum of a transmission function of
our imaging system. We illustrate our protocol with numerical exam-
ples and implement it experimentally.

We start by illustrating in Fig. 1, a typical 4f optical system con-
sisting of two identical thin lenses of focal length f. We place a plate
with a complex transmission function PðnÞ at the rear focal plane of
lens L1. We treat the front focal plane of lens L1 and the rear focal
plane of lens L2 as the input and output planes to our imaging system,
respectively. We generate perfect OCLs in the output plane through
modulation of the amplitude and phase of an optical beam in the
Fourier plane of the system.

We assume the input to our system to be a quasi-
monochromatic, statistically stationary beam propagating along the z
direction. In the space-frequency domain, the second-order statistics
of the beam are characterized by the cross-spectral density (CSD)
function Wðr1; r2;xÞ ¼ hE�ðr1;xÞEðr2;xÞi, where E stands for the
random electric field; r1 and r2 are two position vectors in the input
plane; and the asterisk and the angle brackets denote a complex conju-
gate and ensemble average, respectively. Furthermore, x is a frequency
of light, which will be omitted hereafter for brevity. As our imaging
system is linear, the input and output CSDs are related through a lin-
ear transform as

W outð Þ r01; r
0
2

� �
¼
ð
W inð Þ r1; r2ð Þh� r1; r

0
1

� �
h r2; r

0
2

� �
d2r1d

2r2; (1)

where WðinÞ and WðoutÞ are the input and output CSDs, respectively,
r0i ¼ ðx0i; y0iÞ; i ¼ 1; 2 is an arbitrary position vector in the output
plane, and hðr; r0Þ is a response function of the optical system. For a 4f
optical system shown in Fig. 1, the latter takes the form19

h r; r0ð Þ ¼ � 1

k2f 2

ð
P nð Þ exp � ik

f
n � r� r0ð Þ

� �
d2n: (2)

Here, n is a transverse position vector in the Fourier plane. Equation
(2) indicates that the translationally invariant response function is just
a Fourier transform of the complex transmission function P. It follows
that hðr; r0Þ ¼ hðr� r0Þ ¼ ~Pðr� r0Þ, where the tilde denotes the
Fourier transform.

On combining Eqs. (1) and (2), we obtain the expression

W outð Þ r01; r
0
2

� �
¼W inð Þ r01; r

0
2

� �
� h� �r01

� �
� h �r02
� �

; (3)

where � denotes a convolution. To realize perfect OCLs in the output
plane, we require the response function of the form

h r� r0ð Þ ¼ �
XM
m¼1

d x � x0 þmað Þd y � y0 þmb
� �

; (4)

where dð�Þ is a Dirac delta function; and a and b are lattice periods
along two mutually orthogonal directions that we take to be the x- and
y-axes of the Cartesian coordinate system, respectively. On substitut-
ing Eq. (4) into Eq. (3) and following the basic property of the Dirac
function convolution, we obtain

W outð Þ r01; r
0
2

� �

¼
XM
m1¼1

XM
m2¼1

W inð Þ x01 �m1a; y
0
1 �m1b; x

0
2 �m2a; y

0
2 �m2b

� �
:

(5)

We stress here that Eq. (5) is approximately valid even if each d-func-
tion in Eq. (4) is replaced by any narrow support function as long as
its widths along the two mutually orthogonal directions are much
smaller than those of the CSD [WðinÞ] of the incident beam. The
input–output relation of Eq. (5) can be realized in the laboratory to
any desired accuracy. We notice that provided the two lattice periods
a and b are much larger than the greater of the spot size and coherence
width of the incident beam, the cross terms (m1 6¼ m2) in the sums on
the right-hand side of Eq. (5) can be dropped, resulting in the
expression

W outð Þ r01; r
0
2

� �
�
XM
m¼1

W inð Þ x01 �ma; y01 �mb; x02 �ma; y02 �mb
� �

:

(6)

Next, it follows from the DOC definition27–29 that:

l outð Þ r01; r
0
2

� �
¼

W outð Þ r01; r
0
2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I outð Þ r01ð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I outð Þ r02ð Þ

p ; (7)

where IðoutÞðr0Þ ¼WðoutÞðr0; r0Þ is an average output intensity. Notice
that the output CSD is a superposition of M non-overlapping terms
corresponding to field correlations within M individual nodes of the
OCLs. It follows that whenever r01 and r02 are situated within the nth
node of the lattice, the substitution from Eq. (6) into Eq. (7) yields

l outð Þ r01; r
0
2

� �
�

W inð Þ x01 � na; y01 � nb; x02 � na; y02 � nb
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I inð Þ x01 � na; y01 � nbð Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I inð Þ x02 � na; y02 � nbð Þ

q

¼ l inð Þ x01 � na; y01 � nb; x02 � na; y02 � nb
� �

: (8)

On the other hand, if r01 and r02 are located in different individual
nodes of the lattice, the output field is completely uncorrelated at these
pairs of points such that

l outð Þ r01; r
0
2

� �
¼ 0: (9)

It then follows that, in general,

l outð Þ r01; r
0
2

� �
�
XM
m¼1

l inð Þ x01 �ma; y01 �mb; x02 �ma; y02 �mb
� �

:

(10)

The DOC in Eq. (10) has a functional form of a perfect OCLs:
The spatial node profile of the lattice is determined by the DOC of
the incident beam, while the function P controls the overall lattice
structure. Equation (10) is then the main result of this Letter.

FIG. 1. Schematic diagram of an optical system with Fourier phase lattices. L1 and
L2, thin lens; SM, spectral modulator.
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To demonstrate the feasibility of our method, we first perform
numerical simulations for a random input beam of the Gaussian
intensity and degree of coherence.27 We choose an input beam width
r0 and its coherence length d0 such that r0 ¼ d0 ¼ 0:5mm, and the
other parameters are: f ¼ 400mm and k ¼ 632 nm. Next, we intro-
duce three complex filters to generate three kinds of perfect OCLs. We
exhibit the moduli and phase distributions of the corresponding P
functions in Figs. 2(a1)–2(c1) and Figs. 2(a2)–2(c2), respectively. In
Figs. 2(a3)–2(c3), we show the OCLs numerically generated with the
aid of these complex transmission functions. The adjacent nodes of
each OCL are separated by the distance of 3mm. Our simulations
indicate that the lattice structure can be easily adjusted by varying the
lattice periods. Furthermore, to illustrate the OCL node profile control,
we studied three Gaussian input beams with the DOC structure gener-
ated by the Hermite–Gaussian correlated Schell-model (HGCSM), the
Laguerre–Gaussian correlated Schell-model (LGCSM), and cosine-
Gaussian correlated Schell-model (CGCSM) sources. The detailed
CSD structure of these sources can be found in Refs. 30–32. As a par-
ticular example, we display in Fig. 3 the OCLs numerically generated
with these three input beams with the help of the complex transmis-
sion function with the amplitude and phase shown in Figs. 2(b1) and
2(b2), respectively. We can infer from Figs. 2 and 3 that the OCL
structure and the node profile can be readily controlled by manipulat-
ing the input DOC and the complex transmission function of our
imaging system.

We now show how perfect OCLs can be realized in the labora-
tory. Our protocol hinges on the ability to simultaneously modulate
the amplitude and phase of the complex transmission function P in
the Fourier plane of our imaging system. Here, we adopt encoding the
information about the function P into a phase-only spatial light

modulator (SLM). As suggested in Refs. 34–36, the hologram phase
that is loaded onto the SLM is specified by

USLM ¼ Af sin Arg Pð Þ þ 2pfxx
� �

; (11)

where Af can be obtained by the numerical inversion of J1ðAf Þ ¼ jPj.
J1 is the first-order Bessel function of the first kind; fx denotes a grating
frequency. Here, we take Fig. 4(a) as an example to discuss its genera-
tion. Figs. 2(a1) and 2(a2) are treated as the amplitude and phase of
the function P for the case M¼ 4. Substituting these amplitude and
phase into Eq. (11), we obtain Fig. 4(a). Following the same principle,
we generate the holograms shown in Figs. 4(b) and 4(c) for M¼ 9 and
M¼ 19 cases corresponding to the functions P shown in Figs. 2(b1),
2(b2), 2(c1), and 2(c2), respectively. To this end, we inserted the phase
only SLM into the Fourier plane and loaded computer generated phase
holograms onto it to implement the encoding.

We sketch our experimental setup in Fig. 5. A He-Ne laser emits
a light of the carrier wavelength k ¼ 632:8 nm. It arrives at the first
spatial light modulator (SLM1) after having been transmitted through
a linear polarizer (LP) and a beam splitter (BS). The SLM1 acts as a
phase programmable hologram. The beam emerging from the SLM1
and reflected by the BS passes through a thin lens L1 and reaches a
rotating ground-glass disk (RGGD). We can employ any hologram to
engineer a beam intensity profile on the RGGD. The distance between
L1 and RGGD is used to control the coherence width of the beam.32

Upon transmission through the RGGD, L2, and GAF, a partially
coherent input beam with prescribed DOC emerges. The DOC of the
emerging beam is given by a Fourier transform of the intensity profile
of the beam incident on the RGGD.32 Next, the generated partially
coherent beam is focused by a thin lens L3 and illuminates a prede-
signed hologram on an SLM2. A positive or negative first-order dif-
fraction pattern is then selected by a circular aperture (CA) and
transmitted through a thin lens L4. In the rear focal plane of L4, which

FIG. 2. Simulation results for generation of perfect OCLs [jlðoutÞðr01; r02 ¼ 0Þj2]
of variable lattice structures [(a3)-(c3)] produced via Fourier spectrum modulation.
The amplitude and phase distributions of the relevant P functions are displayed
in Figs. 2(a1)–2(c1) and Figs. 2(a2)–2(c2), respectively. The input is a Gaussian
Schell-model beam. The distance between the adjacent nodes of each lattice in
Figs. 2(a3)–2(c3) is 3 mm.

FIG. 3. Simulation results for generation of perfect OCLs [jlðoutÞðr01; r02 ¼ 0Þj2] of
controllable node profiles. Input beams: (a) HGCSM beam with the indices
n¼m¼ 2, (b) LGCSM beam of the order n¼ 4, and (c) CGCSM beam of the
order n¼ 2. The distance between the adjacent nodes of each lattice equals to
3mm.

FIG. 4. Computer generated holograms of the complex transmission functions of
the imaging system producing prefect OCLs.
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serves as the output plane to our imaging system, we place a CCD
camera to record the random intensity distribution of an output beam.
As the light transmitted through the RGGD obeys Gaussian statistics,
the Gaussian moment theorem27 implies that the DOC of the output
beam can be expressed in terms of the intensity correlations as

jl outð Þ r01; r
0
2

� �
j2 ¼

XN
n¼1

In r01
� �

In r02
� �

NI r01ð ÞI r02ð Þ
� 1: (12)

Here, N is a number of ensemble realizations, Inðr0Þ is an intensity of
the n-th realization, and Iðr0Þ ¼

PN
n¼1 Inðr0Þ=N stands for an average

intensity over the ensemble, see, cf. Ref. 33 for more details. In our
experiment, the beam spot size and the coherence width were mea-
sured to be r0 ¼ 0:35mm and d0 ¼ 0:17mm, respectively, and the
number of ensemble realizations was taken to be 5� 103. On compar-
ing Figs. 3 and 6, we can report good agreement between the experi-
ment and numerical simulations, testifying to the practicality of the
proposed protocol of perfect OCLs generation.

In summary, we have introduced the concept of perfect optical
coherence lattices and advanced a protocol for their experimental real-
ization. We have verified our protocol with numerical simulations and
implemented it experimentally. Our results open new possibilities for

generating customizable perfect optical lattices that are anticipated to
find applications to beam splitting, multi-target probing, and free-
space optical communications. Finally, we discuss the realization of
vector optical coherence lattices. First, we can generate a linearly
polarized perfect OCL with the help of a polarizer. Such an OCL can
then be converted into a uniformly polarized OCL with a circular
polarization, say, with the help of a suitably modified Mach–Zehnder
interferometer setup. We can also employ a polarization convertor to
convert a linearly polarized OCL to a non-uniformly polarized one
with a desired polarization state such as radial or azimuthal
polarization.
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